Question 10: If the quadratic equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ (a \neq b) have a common root, then the value of (a+b) is

- (a) 1
- (b) -1
- (c) 2
- (d) 0

Solution:

$$x^2 + ax + b = 0 ...(i)$$

$$x^2 + bx + a = 0..(ii)$$

If α is a common root of $a_1x^2+b_1x+c_1=0$ and $a_2x^2+b_2x+c_2=0$

$$\alpha^2/(b_1c_2-b_2c_1) = \alpha/(a_2c_1-a_1c_2) = 1/(a_1b_2-a_2b_1) ...(i)$$

Comparing (i) and (ii) with above equations, we get

$$a_1 = 1, b_1 = a, c_1 = b$$

$$a_2 = 1$$
, $b_2 = b$, $c_2 = a$

$$\Rightarrow \alpha^2/(a^2-b^2) = \alpha/(b-a) = 1/(b-a)$$

$$=> \alpha = 1$$

So
$$1/(a^2-b^2) = 1/(b-a)$$

Hence option b is the answer.